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Abstract

In this work, the natural frequencies and mode shapes of polygonal ducts are obtained by a finite element
analysis via a group theoretic approach. We show that the group theoretic techniques provide a natural
setting for the solution of the problem via optimum utilization of the symmetry in the problem. The
simplifications and insights due to the inherent symmetry is intuitively obvious in simple symmetric
structures. However, a systematic exploitation of this symmetry in more complicated structures is less
obvious and is possible perhaps only via useful theorems from group representation theory and the
associated projection operator theory. We illustrate all the main steps with the help of an example of
dihedral groups. This example is directly applicable to the problem addressed in this paper.
The group theoretic approach splits up the original problem into independent subproblems and thereby

affects significant computational savings. More importantly, the approach captures the role of symmetry in
the problem and provides insights which are otherwise not obvious. The multiplicity of the natural
frequencies, arising out of the inherent symmetry is determined a priori and neatly separated into different
subproblems. This suggests a neat physical classification of the mode shapes on a symmetry basis which is
unique to this approach. The values of the natural frequencies and the mode shapes for triangular, square
and pentagonal ducts are shown to be in good agreement with the existing results reported in the literature.
The classification of mode shapes on this symmetry basis is used in the analysis of the polygonal ducts with
number of sides varying up to 16.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction and overview

The free vibration of polygonal ducts has been studied with several different approaches.
Polygonal ducts are engineering structures which are used in heating, ventilating or air
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conditioning applications where the vibrations are a major noise source. Therefore, vibration
analysis of these structures has received significant attention. Azimi et al. [1] used receptance
methods, Yamada and Kobayashi [2] used a transfer matrix method, while Lee [3] used a Raleigh–
Ritz method to compute the natural frequencies and mode shapes. All these authors present
results for polygonal ducts with 3, 4 and 5 sides and their results are in good agreement. Several
important but well-justified assumptions are a necessary part of the analyses reported in literature.
Thus, (1) the duct creases are assumed to act like fixed knife edges across which bending moments
and slope deformations connect panel to panel and (2) only transverse deflections of the plates
that make the duct are considered to be important and that in-plane deflections of the plates are
neglected as small. Azimi et al. [1] consider that these assumptions satisfactory for the prediction
of the lower natural frequencies of ducts upto 8 sides. The inherent symmetry of the problem gives
rise to repeated natural frequencies and mode shapes. It is also noted by Azimi et al. [1] that an
obvious neat physical classification for arrangement of these mode shapes does not suggest itself.
In this paper, the natural frequencies and mode shapes are obtained by the finite element

method (FEM) augmented with group theoretic routines. Adequate discretization enables the
FEM to handle complex geometries to required accuracy. The SIMO element (see Ref. [4–7]) is
used to formulate the FE equilibrium equations of the thin panels. The formulation takes into
account the contribution of membrane, bending and shear strain energies. This is required as the
number of sides of the duct increase beyond eight. However, the analysis entails heavy
discretization of the FE mesh and thereby large problem sizes.
We show that group theory provides the natural setting for the solution of the problem. Group

theoretic subroutines make optimal utilization of the symmetry in the problem. Finding the
natural frequencies of vibration of a structure using finite element discretization reduces to the
generalised linear eigenvalue problem (see Ref. [8]).

KF ¼ o2MF; ð1Þ

where M is the n � n; symmetric, positive semi-definite mass matrix, K is the n � n; positive
definite, symmetric stiffness matrix, o is one of the natural frequencies and F the corresponding
mode shape. To exploit the symmetry of the structure, group representation theory can be used to
construct an n � n orthogonal matrix T such that,

*K ¼ TtKT and *M ¼ TtMT ð2Þ

each have the same block diagonal form (see Ref. [9]). Thus, the original eigenvalue problem is
split into independent subproblems. The heavy discretization necessary for the analysis of
polygonal ducts leads to large problem sizes. The block diagonalization using the group theoretic
approach yields significant computational advantages. More importantly, the computational
effort does not increase with increase in number of sides of the duct because, though the problem
size increases, the symmetry of the problem also increases correspondingly. The frequencies of
ducts upto 16 sides have been calculated to study the vibration characteristics as the geometry of
the duct merges with one of a perfect cylinder. The authors believe that these results are being
reported for the first time.
We also show that there are two keys issues in the analysis of free vibration of polygonal ducts.

* The search for lower natural frequencies leads to a finite number of cluster of closely spaced
modes which need to be determined.
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* There are repeated values of natural frequencies due to the inherent symmetry in the problem.
A suitable set of orthogonal eigenvectors needs to be chosen for the eigenspace determined by
these repeated natural frequencies.

The group theoretic approach offers unique physical insights on both these issues. It was noted
by Azimi et al. [1] that there is no obvious neat physical classification for arrangement of the mode
shapes. We show that the symmetry basis due to the group theoretic approach provides the
physical classification of the mode shapes of the polygonal ducts.
The layout of the paper is as follows. In Section 2, we discuss the group theoretic approach for

the generalised eigenvalue problem of symmetric structures with the help of the example of
dihedral groups. The group theoretic results presented here are directly applicable to the free
vibration analysis of polygonal ducts. In Section 3, we compare the results of ducts with 3, 4 and 5
sides with the results reported in the literature and show that there is excellent agreement. The
analysis is continued for ducts with sides upto 16 to quantitatively understand the vibration
characteristics as the geometry merges with that of a perfect cylinder. In Section 4, the physical
classification of the mode shapes on a symmetry basis is discussed. We end with some concluding
remarks in Section 5.

2. The group theoretic approach for the generalised eigenvalue problem

In this section, we discuss the group theoretic approach for the generalised eigenvalue problem
arising in the search for the normal modes of linear free vibration of symmetric elastic structures.
A few well-known results from group representation theory and the associated projection
operator theory form the basis of this approach. All the main steps are illustrated with the
example of dihedral groups (the group of symmetries of a regular polygon) and the reader is
directed to relevant literature for complete details.

2.1. The generalised eigenvalue problem

The equation of motion of a finite dimensional approximation to a continuous linear elastic
structure leads to a second order linear ordinary differential equation of the form

M .xþ Kx ¼ 0: ð3Þ

We look for special solutions of Eq. (3), referred to as normal co-ordinates where all the points in
the structure vibrate harmonically with the same frequency and simultaneously pass through the
equilibrium position. Any vibration of the structure is a linear combination of these normal
modes. This leads to the generalised eigenvalue problem

Kx0 ¼ o2Mx0: ð4Þ

The eigenvalues are the natural frequencies and the corresponding eigenvectors are the mode
shapes.
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There exist n eigenvalues and corresponding eigenvectors that satisfy

Kxl ¼ o2
l Mxl ðno sumÞ; ð5Þ

where l ¼ 1; 2;y; n denotes the mode number. Further the positive definiteness of K and M leads
to the result,

0oo1po2p?pon ð6Þ
and the symmetry of K and M implies

xTkMxl ¼ dkl ðM orthonormalityÞ;

xTkKxl ¼ o2
l dkl ðK orthogonalityÞ; ð7Þ

where dkl is the Kronecker delta. See Ref. [10] for a proof of the orthonormality and
orthogonality.
It is important to note that the transformations XTMX and XTKX that completely block

diagonalise the stiffness and the mass matrix are not orthogonal transformations. Thus, the
transformation does not have the simple interpretation of a change of basis. In fact, this is the
essential difference between the generalised eigenvalue problem and a typical eigenvalue problem
where the transformations for the matrix form a change of basis. The transformation in the simple
eigenvalue problem is a similarity transformation while the generalised eigenvalue problem
requires a congruence transformation. The theorems relating to the conditions for existence of
solutions shown in Eq. (7) are discussed in Ref. [11, pp. 466–468].
As explained by Hughes [12, pp. 570–571], an engineer is typically interested in lower modes in

considerations of dynamic response. In fact, the higher modes of finite element discretizations are
spurious artifacts of the discretization process. Thus, the computational algorithms are aimed at
extracting fo2

l ; xlg; 1plpnmodes; where nmodes5n is the desired number of eigen pairs. In most
practical problems, n could be very large ðB20; 000Þ and, therefore, the solution of the eigenvalue
problem, even for a few eigen pairs, may entail extensive and costly calculation. An algorithm
which utilises both the Cholesky factorization and the symmetric QR factorization is discussed in
Ref. [11, pp. 469–471]. This requires around 14n3 flops (floating point operations).
The group theoretic approach and the symmetry adapted basis of transformation mentioned in

Section 1 (Eqs. (1) and (2)) depend on a key theorem from group representation theory. We
discuss this theorem below, in particular its applicability and urge the reader to find the details
(including some key definitions and examples of dihedral groups) in the appendix.

2.2. The fundamental theorem

The fundamental theorem addresses the following question,
What do the linear operators K and M (Eqs. (1) and (2)) look like in a symmetry adapted

basis?
Let L be a linear operator, mapping an n dimensional vector space V into itself. L is said to

have the symmetry of the group representation H of the group G if it commutes with every
representing matrix, i.e.,

LHðgÞ ¼ HðgÞL; 8gAG:
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Theorem 1. Let G be a finite group with qðGÞ inequivalent irreducible representations, each of

dimension n1; n2;y; nqðGÞ: Then there exists a basis for the subspaces, Vm; of the standard
decomposition in which a symmetric linear operator L decomposes into a direct sum of

n1 identical square matrices L1

n2 identical square matrices L2

^
nqðGÞ identical square matrices LqðGÞ:

This is the block diagonalisation of the linear operator L: Thus it is clear that the original problem
is split up into independent subproblems on a symmetry basis (Figs. 1 and 2).

2.2.1. Application

The basic idea here is that the linear operators K and M operate on the vector space of
displacements which can be decomposed into several subspaces and, correspondingly, the linear
operators can be decomposed to give a block diagonal matrix form. Thus, the group theoretic
approach decouples the problem into several independent subproblems on a symmetry basis. In
particular, for the generalised eigenvalue problem, the subproblems group together vibration
modes which share the same symmetry. The main advantages of the approach are:

(1) There are significant savings in computational effort. As discussed in Section 1.2, the aim is to
calculate the lower modes of vibration. This is precisely facilitated by calculating the lower
modes in each block (i.e., in each subproblem).

(2) There is a priori information on the number of symmetry blocks and the problem sizes of the
subproblems.

(3) The finite number of admissible mode shapes (i.e., the symmetry of the subspaces in the
standard decomposition) are known a priori. The blocks with the repeated eigenvalues are
also known a priori but it is to be noted that repeated eigenvalues may correspond to different
mode shapes depending on the symmetry of the associated block.

(4) It also presents an option of parallel processing because the subproblems are independent.
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Fig. 1. The banded form of the stiffness and mass matices in the standard basis.
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Many important symmetric structures lend themselves to the group theoretic analysis discussed in
this article. See Ref. [8] for a discussion on symmetric trusses and Ref. [13] for results on cylindrical
shells. In this paper, we discuss free vibration of polygonal ducts where the mode shapes are in no
way obvious. We also study the qualitative behaviour as the geometry merges from a structure of
low symmetry to one with perfect symmetry (the cylinder). The group theoretic method and the
associated decoupling suggest that this is a natural way of dealing with such a problem. In the next
section, we present the free vibration analysis of polygonal ducts using this approach.

3. Results and discussion

3.1. Ducts with 3, 4 and 5 sides

In this section, we present the results of the free vibration analysis for polygonal ducts of 3, 4 and
5 sides. The group theoretic results and the results for the loss of symmetry in the finite number of
lower vibration modes fall out very neatly for these lower symmetry problems. These mode shapes
for the three sided and four sided duct and the associated symmetry are shown in Figs. 3 and 4.
Thus, all the lower mode shapes of interest can be obtained in a systematic way and neatly classified
on the basis of symmetry. The confusion of missing certain mode shapes for which the connecting
moments between plates are zero (this occurs in the receptance method, see Ref. [2]) does not arise.
All these aspects, which are due to the group theoretic approach, are discussed in detail for the mode
shapes of the pentagonal (see Figs. 5 and 6) duct. The pentagonal duct has rich enough block
structure and the discussion is directly applicable to the results of the three sided and square ducts.
The FE analysis, using group theory, of a pentagonal duct is presented here. The a priori

information from the group representation theory results discussed in Section 2 and the appendix
are as follows,

(1) As per Eq. (A.7) there are exactly six independent subproblems (two associated with one
dimensional irreducible representations and four associated with two dimensional irreducible
representations).
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Fig. 2. The identical block diagonalisation of the stiffness and mass matrices in the symmetry adapted basis.
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(2) The symmetry associated with these finite number of subproblems is given by Eq. (A.13).
Thus, in the search for the first few natural frequencies, there is one vibration mode shape
with D5 symmetry, one with C5 symmetry, two different mode shapes with just reflection
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Fig. 3. The mode shapes of the first natural frequencies in the four symmetry blocks for a triangular duct.

Fig. 4. The mode shapes of the first natural frequencies in the six blocks for a square duct.
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Fig. 5. The mode shapes of the first natural frequencies in the six blocks for the pentagonal duct.

Fig. 6. The mode shapes of the second natural frequencies in the six blocks for the pentagonal duct.

S.J. Mohan, R. Pratap / Journal of Sound and Vibration 269 (2004) 745–764752



symmetry (D1 symmetry) and two different completely asymmetric mode shapes (C1

symmetry). There are two pairs of repeated eigenvalues with different mode shapes (see Figs.
5 and 6).

(3) The problem sizes of these independent subproblems is known a priori. Thus the
original discretized problem size is 18 900� 18 900 while the largest subproblem size is
3780� 3780; respectively (see Ref. [14] for a detailed tabulation of formulae for subproblem
sizes).

The subproblem sizes, natural frequencies and symmetries of the mode shapes are tabulated in
Table 1. The results are in excellent agreement with those of Azimi et al. [1]. The mode shapes of
the first natural frequencies in each of the six blocks are shown in Fig. 5 and those with the second
natural frequencies in Fig. 6. As is to be expected the first natural frequency in each block
corresponds to a mode shape with a half axial wave and the second with one axial wave. Thus, it is
clear that only the first natural frequency in each block needs to be determined in the search for
the lower natural frequencies of the structure.
The strain energy distribution in each of the vibration modes is shown in Fig. 7. The

contributions due to shear and membrane stretching are negligible and the bending strain energy
is dominant. This is in complete agreement with the assumptions made in Ref. [1]. The identical
blocks associated with each two dimensional group representation have different mode shapes but
identical natural frequencies and strain energies.
Similarly, there are exactly four subproblems associated with the free vibration of a triangular

duct and six subproblems associated with a duct of square cross-section. The mode shapes and the
symmetry of the configuration are shown in Figs. 3 and 4.

3.2. Ducts with increasing symmetry

The finite element computations via block diagonalisation were carried out for polygonal ducts
with 5, 6, 8, 12 and 16 sides and compared with the results of a cylinder of identical dimensions to
study the effect of increasing symmetry. The strain energy distribution into bending, membrane
and shear along with the mode shape of the fundamental frequency for all the ducts are shown in
Figs. 8–10.
It is clear from the results that:

(1) The cluster of mode shapes at lower natural frequencies increases with symmetry (increase in
number of blocks in the block diagonalisation).

(2) All mode shapes in all blocks except block 2 have negligible shear strain energy. Block 2
groups together all the torsional modes of vibration, i.e., modes shapes with cyclic symmetry.
The fundamental mode shape in this block for polygonal ducts with 5 and 8 sides is shown in
Fig. 11.

(3) For polygonal ducts upto 8 sides, the strain energy is dominated by bending and the creases
act like knife edges without any deformation. This is in good agreement with the assumptions
of Ref. [1].

(4) There is significant contribution from both bending and membrane strain energies in ducts
with sides 12 and 16. The deformation of the edges is seen in the mode shapes. The behaviour
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of energy distribution for larger number of sides (12 and 16) appears complicated. The
bending strain energy displays a minima with increasing number of circumferential
waves. The vibration modes with lower symmetry have a significant contribution
from membrane strain energy because such lower symmetry modes are only possible by
significant translation of the duct crease. This contribution of the membrane strain
predictably tends to zero with increase in number of circumferential waves (i.e., increase in
symmetry) where the mode shapes of free vibration are possible without distortion of the duct
crease.

(5) The trend in the distribution of strain energy for the perfect cylinder is clear. The membrane
deformation is dominant and bending negligible at lower number of circumferential waves
while the trend is exactly opposite at higher number of circumferential waves.

ARTICLE IN PRESS

Table 1

Free vibration analysis of ducts

Non-dimensional frequency: %o ¼ o� a2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12rð1	 m2Þ=Eh2

p
Material properties: E ¼ 20:6� 104 N=mm2; r ¼ 7:85� 10	9 N s2=mm4; m ¼ 0:3
FEM data: No. of elements per side ¼ 30; no. of longitudinal rings ¼ 21:

Block no. Block size Isotropy First natural Second natural Azimi et al.

subgroup frequency frequency [1]

1/2 axial wave 1 axial wave

Analysis of a pentagonal ducta

1 1932� 1932 D5 28.82 54.86 28.95/54.74

2 1848� 1848 C5 49.57 79.23 not available

3 3780� 3780 D1 24.96 52.71 not available

4 3780� 3780 D1 20.39 50.03 20.43/49.76

5 3780� 3780 C1 24.96 52.71 not available

6 3780� 3780 C1 20.39 50.03 20.43/49.76

Analysis of a square ductb

1 1932� 1932 D4 28.90 54.98 28.95/54.74

2 1848� 1848 C4 49.56 79.21 49.35/78.96

3 1890� 1890 D2 69.54 94.93 69.33/N.A.

4 1890� 1890 D2 19.69 49.63 19.74/49.35

5 3780� 3780 D1 23.59 51.93 23.65/51.67

6 3780� 3780 D1 23.59 51.93 23.65/51.67

Analysis of a triangular ductc

1 1932� 1932 D3 28.91 55.02 28.95/54.74

2 1848� 1848 C3 49.44 79.03 not available

3 3780� 3780 D1 21.52 50.67 21.60/50.45

4 3780� 3780 C1 21.52 50.67 21.60/50.45

aGeometrical data: side a ¼ 117:55 mm; thickness h ¼ 2 mm; length L ¼ 117:55 mm; d:o:f : ¼ 18 900; boundary
condition: simply supported.

bGeometrical data: side a ¼ 141:42 mm; thickness h ¼ 2 mm; length L ¼ 141:42 mm; d:o:f : ¼ 15 120; boundary
condition: simply supported.

cGeometrical data: side a ¼ 173:21 mm; thickness h ¼ 2 mm; length L ¼ 173:21 mm; d :o:f : ¼ 11 340; boundary
condition: simply supported.
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(6) There is very close agreement in the value of the fundamental natural frequency of the 16
sided duct with that of the plain cylinder. (1:174� 104 rad=s for the plain cylinder and
1:172� 104 rad=s for the 16 sided duct). The masses of both the geometries are nearly the
same and the FEM discretization for both the structures results in nearly identical stiffness.
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Fig. 8. The fundamental mode for ducts with 5, 6, 8, 12, 16 sides and the plain cylinder.
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4. The physical insights due to the symmetry basis

In this section, we highlight the results which are unique to the group theoretic approach of the
analysis to the problem of free vibration of polygonal ducts.

4.1. The cluster of natural frequencies

The symmetry basis of the block diagonalisation predicts a priori the number of blocks, i.e., the
number of lower natural frequencies in the cluster. These frequencies are decoupled into separate
blocks. Thus, the problem is reduced to determine the lowest natural frequency in each block. As
explained in Section 3, each block has the identity of the symmetry of a subgroup. Thus, we know
the number of important lower natural frequencies and distinguish them with the symmetry of the
mode shapes (see Figs. 3 and 5).

4.2. Repeated eigenvalues and associated orthogonal modes

Determining orthogonal modes shapes for the eigenspace of repeated eigenvalues by the
receptance method results in a fair bit of extra computation and an intelligent guess of the mode
shapes. This guess is not always easy in complicated symmetric systems. The issue is addressed in
detail by Johnson and Bishop [15] for a specific symmetric structure of a turbine blade. It is to be
noted that this calculation is important in forced response predictions to avoid incomplete
solutions. The block diagonalisation ensures that the repeated eigenvalues are decoupled into
separate orthogonal blocks. Thus, an orthogonal set of eigenvectors associated with repeated
eigenvalues are easily determined in the group theoretic approach. However, we hasten to add
here that this is not a serious issue in standard finite element codes which use the Lanczos

Algorithm. Theoretically, the Lanczos algorithm can never compute the second copy of a multiple

ARTICLE IN PRESS

Fig. 11. The mode shapes with cyclic symmetry, i.e., torsional mode.
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eigenvalue. Fortunately, this argument only holds in exact arithmetic. In finite precision, roundoff
errors comes to the rescue though a second copy of the repeated natural frequency will converge
some steps after the first has converged. See Ref. [12] for details.

4.3. Solution for ducts with small asymmetry

Finally, we note that though symmetry is required for the analysis carried out in this work,
slight discrepancy from the symmetrical shape can also be analyzed by the group theoretic
technique. The problem is treated as a symmetric problem with a slight perturbation and one
proceeds by standard perturbation techniques. The starting point is the solution of the perfectly
symmetric problem and the solution of the perturbed problem is obtained by successive
approximations. Each iteration can be reduced to a linear symmetric problem (see Ref. [15, pp.
64–65]). Thus, the solution of the asymmetric problem can be obtained by a series of iterations
where each iteration possesses the symmetry of the problem and can be solved with exactly the
same procedure as presented in this paper.

5. Conclusions

A complete, accurate and efficient analysis of free vibration analysis of polygonal ducts is
facilitated by the finite element method augmented by group theoretic subroutines.

(1) The mode shapes of polygonal ducts upto 8 sides is dominated by transverse bending strain
energies. Both bending and inplane stretching are significant in vibration of ducts upto 16
sides. The shear strain energy needs to be considered only in the torsional mode of vibration
(i.e., in the mode with cyclic symmetry).

(2) The lower modes of vibration are characterised by a finite cluster of natural frequencies
depending on the inherent symmetry of the polygonal duct. This finite number can be
calculated a priori and the corresponding mode shapes determined systematically by the
group theoretic approach. Thus, the symmetry basis suggests a natural scheme for a physical
classification of the mode shapes. The significance of the classification is that it predicts the
correct finite number of lower mode shapes that should be considered for a linear vibration
analysis of the structure. Thus, it ensures completeness, i.e., no significant mode shape is
omitted in the analysis.

(3) Free vibration analysis predicts several pairs of repeated eigenvalues. These are neatly
decoupled in the block diagonalisation by the orthogonal similarity transformation and a
suitable set of orthogonal eigenvectors can be easily determined.
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Appendix A. The group theoretic approach

There are several lucid texts with details of applications of group theory in engineering
problems (see Refs. [16,17]). In this section, we outline the main steps in the application of group
theory to the free vibration problem with the help of an example of dihedral groups.

A.1. Group representations

The set of symmetries of a regular n sided polygon consisting of rotations and reflections has an
algebraic structure of a group, namely the dihedral group ðDnÞ: This is an example of a finite
group of order (number of elements of the set) 2n:

Dn ¼ fe; ra;y; rka; s; sra;y; srkag; where rna ¼ s2 ¼ ðsraÞ
2 ¼ e: ðA:1Þ

Here rka denotes a rotation by an angle of ka (where a ¼ 2p=n; k assumes integer values from 1 to
n 	 1 and s denotes a reflection). Thus, the group is the set of all geometric operations which take
the regular polygon into inself.
For applications to solutions of applied problems with symmetry, we consider the vector space

in which the solutions of a mathematical problem lie. In the problem of free vibration of
structures, we look for periodic solutions. Thus, the solutions lie in the infinite dimensional vector
space V of all continuously differentiable functions with period 2p: The first step in applying
group theoretic results to exploit the symmetry of the problem is to represent each element of the
group (Eq. (A.1)) as a linear transformation acting on a vector space. This group representation is
defined below.
Let G be an abstract group, jGj be the number of elements of G; g a typical element of G (i.e.,

gAG) and GLðV Þ be the group of all linear transformations of V onto itself. For the problem
considered here, G is the dihedral group of Eq. (A.1), i.e., Dn; jGj ¼ 2n; a typical element of the
group is g ¼ ra or sra and the set of linear transformations ðGLðVÞÞ representing the group in the
vector space are combinations of rotation and reflection matrices as given in Eq. (A.5) below. A
representation of G on V is a homomorphism H : G-GLðV Þ; i.e.,

HðghÞ ¼ HðgÞHðhÞ 8g; hAG: ðA:2Þ

Thus, the representation of the group is a mapping from the elements of the group to linear
transformations of the vector space such that matrix multiplication of the linear transformations
are consistent with the group multiplication operation. Consider the following action of the
dihedral group Dn on V ; the infinite dimensional vector space of all continuously differentiable
functions with period 2p:

ðHðrkaÞf ÞðfÞ ¼ f ðfþ kaÞ;

ðHðsrkaÞf ÞðfÞ ¼ f ð	f	 kaÞ; ðA:3Þ

where f ðfÞAV : The domain of the periodic functions f ðfÞ is a circle ½0; 2p�: Thus, it is clear from
Eq. (A.3) that the linear transformations corresponding to rotations ðHðrkaÞÞ; rotate the domain
of the periodic function by the same angle and the linear transformations corresponding to
reflections ðHðsrkaÞÞ reflect the domain of the periodic function along the same axis. It can be
easily verified that the set fHðrkaÞ;HðsrkaÞ; ðk ¼ 1; 2; 3;y; nÞ; a ¼ 2p=ng is a linear representation
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of the group Dn on V (i.e., HðghÞ ¼ HðgÞHðhÞ 8g; hADn). For example, let us consider elements
of the group, g and h; as a reflection s and rotation ra; respectively. The linear trans-
formation HðghÞ; i.e., HðsraÞ maps the function f ðfÞ to f ð	f	 aÞ (Eq. (A.3)). The linear
transformation given by the product HðgÞHðhÞ; i.e., ðHðsÞðHðraf ÞÞðfÞ also maps the function f ðfÞ
to f ð	f	 aÞ:
We now fix basis for V (for our case, the set of all continously differentiable

functions with period 2p), a natural choice for the vector space being the Fourier
modes f1; cos f; sin f; cos 2f; sin 2f;yg: In this basis, the group representation set
fHðrkaÞ;HðsrkaÞ; ðk ¼ 1; 2; 3;y; nÞ; a ¼ 2p=ng are non-singular orthogonal linear transformations
as follows:

HðrkaÞ ¼

1 0 0 y 0

0 Rka 0 y 0

0 0 R2ka y 0

^ ^ ^ & ^

0 0 0 RNka

2
6666664

3
7777775
; ðA:4Þ

HðsrkaÞ ¼

1 0 0 y 0

0 JRka 0 y 0

0 0 JR2ka y 0

^ ^ ^ & ^

0 0 0 JRNka

2
6666664

3
7777775
; ðA:5Þ

where Rjka ¼
cos jka sin jka
	sin jka cos jka

	 

; J ¼

1 0
0 	1

	 

; JRjka ¼

cos jka sin jka
sin jka 	cos jka

	 

; j ¼ 1; 2;yN;

where N is the number of sine (and cosine) Fourier terms considered in the calculation.

A.2. Standard decomposition of the vector space

We now compile some crucial results from group representation theory. The reader can refer to
Serre [18] for a detailed exposition and complete proofs and to Fujii et al. [19] for a discussion on
dihedral groups.

(1) The vector space V can be uniquely decomposed into mutually orthogonal and invariant
subspaces (i.e., invariant under the action of all the linear transformations of the group
representations). The number of subspaces is equal to the number of mutually inequivalent,
irreducible representations of the group ðqðGÞÞ (see Ref. [18] for definitions and theorems on
irreducible representations which are also referred to as the building blocks of any completely
reducible representation). Thus,

V ¼ "qðGÞ
m¼1 VG

m : ðA:6Þ

A finite group has a finite number of irreducible representations and these are well known and
tabulated in the group theory literature. The qðGÞ non-equivalent irreducible representations
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of the dihedral group Dn can be indexed as,

RðDnÞ ¼ fð1; jÞ j j ¼ 1; 2; 3; 4g,fð2; jÞ j j ¼ 1;y; ðn 	 2Þ=2g for n even;

RðDnÞ ¼ fð1; jÞ j j ¼ 1; 2g,fð2; jÞ j j ¼ 1;y; ðn 	 1Þ=2g for n odd;

where the first component d of the index ðd; jÞ indicates the dimension of the representation.
The one dimensional irreducible representations tð1;jÞ of Dn are given by

tð1;1ÞðrÞ ¼ 1; tð1;1ÞðsÞ ¼ 1;

tð1;2ÞðrÞ ¼ 1; tð1;2ÞðsÞ ¼ 	1;

tð1;3ÞðrÞ ¼ 	1; tð1;3ÞðsÞ ¼ 1;

tð1;4ÞðrÞ ¼ 	1; tð1;4ÞðsÞ ¼ 	1:

The two dimensional irreducible representations tð2;jÞ of Dn are given by

tð2;jÞðrÞ ¼ Rj; tð2;jÞðsÞ ¼ S;

where

R ¼
cosð2p=nÞ 	sinð2p=nÞ

sinð2p=nÞ cosð2p=nÞ

 !
; S ¼

1 0

0 	1

 !
:

We note that r and s are the generators of the group Dn and that the representations are by
1� 1 and 2� 2 orthogonal matrices.

(2) Thus the standard (unique) decomposition of the vector space V under the action of the
dihedral group Dn is,

V ¼
Vð1;1Þ"Vð1;2Þ"Vð1;3Þ"Vð1;4Þ"ð"n=2	1

l¼1 Vð2;lÞÞ n ¼ even;

Vð1;1Þ"Vð1;2Þ"ð"ðn	1Þ=2
l¼1 Vð2;lÞÞ n ¼ odd:

(
ðA:7Þ

Further, consider each subspace associated with the two dimensional irreducible representa-
tion, Vð2;lÞ: This can be split up into two (as it is associated with a two dimensional irreducible
representation) invariant, mutually orthogonal subspaces by a suitable choice of basis
(referred to as symmetry adapted basis in literature). Thus,

Vð2;lÞ ¼ Vð2;lþÞ"Vð2;l	Þ: ðA:8Þ

To summarise, the group representations splits up the vector space into mutually
orthogonal subspaces invariant under the action of each of the linear transformation of the
group representation. It turns out that each of these subspaces is associated with certain
symmetries. The next step is to determine these subspaces and their associated symmetry. The
group theory results compiled in Sections A.2.1 and A.2.2 and the formulae of projection
operator theory are all that are required.
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A.3. Projection operator theory and isotropy subgroups

In this section we address the following questions:
What are the formulae that determine the subspaces in the standard decomposition of the

vector space V?
What are the symmetries associated with each of these subspaces?
The configuration vector space V is resolvable into a set of qðGÞ mutually orthogonal, invariant

subspaces V ¼ "qðGÞ
m¼1 VG

m : VG
m associated with a one dimensional irreducible representation is the

range of the projection operator

Pm ¼
1

jGj

XjGj

i¼1

trðtmðgiÞÞHðgiÞ; ðA:9Þ

where trðtmðgiÞÞ is the trace of the irreducible representation matrix (tabulated in Appendix A),
gAG; HðgiÞ is the orthogonal group representation as given in Eqs. (A.4) and (A.5). The similar
formulae for the span of the two subspaces associated with the two dimensional irreducible
representation are a bit more complicated and are not reproduced here. The reader is referred to
Ref. [17]. The main point is that the information of Eqs. (A.4) and (A.5) and Appendix A suffice
to determine all these subspaces.
We continue with the example of the action of the dihedral group ðDnÞ on the action of the

vector space of all continously differential functions ðV Þ: For the case when n is even, the
projection operators are

P1 ¼
1

2n

Xn

k¼1

½HðrkaÞ þ HðsrkaÞ�;

P2 ¼
1

2n

Xn

k¼1

½HðrkaÞ 	 HðsrkaÞ�;

P3 ¼
1

2n

Xn

k¼1

ð	1Þk½HðrkaÞ þ HðsrkaÞ�;

P4 ¼
1

2n

Xn

k¼1

ð	1Þk½HðrkaÞ 	 HðsrkaÞ�;

P4þh ¼
2

2n

Xn

k¼1

cosðlkaÞ½HðrkaÞ þ HðsrkaÞ�; ðA:10Þ

where l ¼ 1; 2;y; ðn 	 2Þ=2; k ¼ 1; 2;y; n and a ¼ 2p=n: Using these formulae for the projection
operators, the following mutually orthogonal, invariant subspaces of V are

Vð1;1Þ ¼ spanf1; cos na; cos 2na;yg;

Vð1;2Þ ¼ spanfsin na; sin 2na;yg;

Vð1;3Þ ¼ span cos
n

2
a; cos

3n

2
a;y

� �
;
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Vð1;4Þ ¼ span sin
n

2
a; sin

3n

2
a;y

� �
;

Vð2;lþÞ ¼ spanfcosmag;

Vð2;l	Þ ¼ spanfsinmag; ðA:11Þ

where m ¼ l; n 	 l; n þ l; 2n 	 l; 2n þ l;y;N:
The notion of symmetry group of these subspaces plays a crucial role in obtaining physical

insights which are unique to the group theoretic approach. For the subspace VmCV ; G½Vm� is the
symmetry group of V if

G½Vm� ¼
deffgADn j HðgÞf ðfÞ ¼ f ðfÞ 8f ðfÞAVmg: ðA:12Þ

The following results are easily verified by inspection and with the help of results in Eqs. (A.3) and
(A.11)

G½Vð1;1Þ� ¼ Dn;

G½Vð1;2Þ� ¼ Cn;

G½Vð1;3Þ� ¼ Dn=2;

G½Vð1;2Þ� ¼ Cn=2 ðn ¼ evenÞ;

G½Vð2;lÞ� ¼ Cgcd½n;l�;

G½Vð2;lþÞ� ¼ Dgcd½n;l�;

G½Vð2;l	�Þ� ¼ Cgcd½n;l�; ðA:13Þ

where gcd½n; l� denotes the greatest common divisor of n and l and l ¼ 1; 2;y; ðn 	 2Þ=2:
We should note that so far the discussion has been focused completely on the dihedral group Dn

and its action on the vector space V of all continuously differentiable functions. Our main goal is
to find the solution of the generalised eigenvalue problem discussed in Section 1 (Eqs. (1) and (2)).
The fundamental theorem discussed in Section 2.2 is applicable and leads to the identical block
diagonalization of K andM: See Ref. [8] for a simple proof of the result that the linear operators K
and M do commute with the entire set of linear transformations representing the group.
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